Basic Guidelines:

Convergence of p-series: ∑^{+∞}_{k=1} 1/k^p is a p-series and converges if p > 1 and diverges if 0
The Integral Test: Let ∑^{+∞}_{k=1} u_k be a series with positive terms, and let f(x) be the function that results when k is replaced by x. If f is decreasing and continuous on the interval [1, +∞), then ∑^{+∞}_{k=1} u_k and ∫^{+∞}_{k=1} f(x)dx both converge or both diverge.

1. Use the Divergence Test to reach a conclusion about the following series. If the Divergence test fails to give any useful information, try using the Integral Test to learn more:

(a)
$$\sum_{k=1}^{+\infty} \frac{k^3}{k^3 + 7}$$
 (b) $\sum_{k=1}^{+\infty} \frac{9k}{e^k}$

2. Find p and determine whether the p-series converges or diverges.

(a)
$$\sum_{k=1}^{+\infty} \frac{1}{\sqrt[5]{k}}$$
 (b) $\sum_{k=1}^{+\infty} k^{-e}$

3. Check that the integral test is applicable, and then use it to determine whether the series converges. (a) $\sum_{k=5}^{+\infty} \frac{2k}{8+k^2}$ (b) $\sum_{k=1}^{+\infty} \frac{1}{4+k^2}$